Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 324(6): H881-H892, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115627

RESUMO

The effect of exercise on disease development in hypertrophic cardiomyopathy (HCM) genotype-positive individuals is unresolved. Our objective was to test the effect of exercise training initiated before phenotype development on cardiac fibrosis, morphology, and function in a mouse model of HCM. Genotype-positive Myh6 R403Q mice exposed to cyclosporine A (CsA) for induction of HCM (HCM mice) were allocated to high-intensity interval treadmill running or sedentary behavior for 6 wk. CsA was initiated from week 4 of the protocol. Cardiac imaging and exercise testing were performed at weeks 0, 3, and 6. After protocol completion, arrhythmia provocation was performed in isolated hearts, and left ventricles (LVs) were harvested for molecular biology and histology. Exercised HCM mice ran farther and faster and exhibited attenuated left atrial (LA) dilatation compared with sedentary mice. Exercised HCM mice had no difference in fibrosis compared with sedentary HCM mice despite lower expression of key extracellular matrix (ECM) genes collagen 1 and 3, fibronectin, and lysyl oxidase, accompanied by increased activation of Akt, GSK3b, and p38. Exercise did not have negative effects on LV function in HCM mice. Our findings indicate mild beneficial effects of exercise initiated before HCM phenotype development, specifically lower ECM gene expression and LA dilatation, and importantly, no detrimental effects.NEW & NOTEWORTHY Genotype-positive hypertrophic cardiomyopathy (HCM) mice had beneficial effects of exercise initiated before phenotype development. Exercised HCM mice had increased exercise capacity, smaller left atria, no increase in hypertrophy, or reduction of function, and a similar degree of fibrosis despite reduction of central extracellular matrix (ECM) genes, including collagens, compared with sedentary HCM mice.


Assuntos
Cardiomiopatia Hipertrófica , Animais , Camundongos , Genótipo , Ventrículos do Coração , Fenótipo , Fibrose
2.
Front Immunol ; 11: 1968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849657

RESUMO

Immune surveillance of cancer cells is facilitated by the Natural Killer Group 2D (NKG2D) receptor expressed by different lymphocyte subsets. It recognizes NKG2D ligands that are rarely expressed on healthy cells, but upregulated by tumorigenesis, presenting a target for immunological clearance. The molecular mechanisms responsible for NKG2D ligand regulation remain complex. Here we report that cancer cell metabolism supports constitutive surface expression of the NKG2D ligand MHC class I chain-related proteins A (MICA). Knockout of the N-glycosylation gene N-acetylglucosaminyltransferase V (MGAT5) in HEK293 cells induced altered metabolism and continuous high MICA surface expression. MGAT5 knockout cells were used to examine the association of cell metabolism and MICA expression through genetic, pharmacological and metabolic assays. Findings were verified in cancer cell lines. Cells with constitutive high MICA expression showed enhanced spare respiratory capacity and elevated mitochondrial efflux of citrate, determined by extracellular flux analysis and metabolomics. MICA expression was reduced by inhibitors of mitochondrial function, FCCP and etomoxir e.g., and depended on conversion of citrate to acetyl-CoA and oxaloacetate by ATP citrate lyase, which was also observed in several cancer cell types. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis revealed that upregulated MICA transcription was associated with an open chromatin structure at the MICA transcription start site. We identify mitochondria and cytoplasmic citrate as key regulators of constitutive MICA expression and we propose that metabolic reprogramming of certain cancer cells facilitates MICA expression and NKG2D-mediated immune recognition.


Assuntos
Ácido Cítrico/metabolismo , Citoplasma/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunomodulação , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Feminino , Edição de Genes , Regulação da Expressão Gênica , Glicólise , Células HEK293 , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ligantes , Ativação Linfocitária , Linfócitos/imunologia , Linfócitos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...